Satisfiability transition in asymmetric neural networks
نویسندگان
چکیده
Abstract Asymmetry in the synaptic interactions between neurons plays a crucial role determining memory storage and retrieval properties of recurrent neural networks. In this work, we analyze problem storing random memories network connected by matrix with definite degree asymmetry. We study corresponding satisfiability clustering transitions space solutions constraint satisfaction associated finding matrices given memories. find, besides usual SAT/UNSAT transition at critical number to store network, an additional for very asymmetric matrices, where competing constraints (definite asymmetry vs storage) induce enough frustration make it impossible solve. This is particularly striking case single store, no quenched disorder present system.
منابع مشابه
Graph Neural Networks and Boolean Satisfiability
In this paper we explore whether or not deep neural architectures can learn to classify Boolean satisfiability (SAT). We devote considerable time to discussing the theoretical properties of SAT. Then, we define a graph representation for Boolean formulas in conjunctive normal form, and train neural classifiers over general graph structures called Graph Neural Networks, or GNNs, to recognize fea...
متن کاملBrainwashing Random Asymmetric `Neural' Networks
An algorithm for synaptic modiication (plasticity) is described by which a recurrently connected network of neuron-like units can organize itself to produce a sequence of activation states that does not repeat itself for a very long time. During the self-organization stage, the connections between the units undergo non-Hebbian modiications, which tend to decorrelate the activity of the units, t...
متن کاملAttractors in fully asymmetric neural networks
The statistical properties of the length of the cycles and of the weights of the attraction basins in fully asymmetric neural networks (i.e. with completely uncorrelated synapses) are computed in the framework of the annealed approximation which we previously introduced for the study of Kauffman networks. Our results show that this model behaves essentially as a Random Map possessing a reversal...
متن کاملRelaxation, closing probabilities and transition from oscillatory to chaotic attractors in asymmetric neural networks
Attractors in asymmetric neural networks with deterministic parallel dynamics present a “chaotic” regime at symmetry η ≤ 0.5 where the average length of the cycles increases exponentially with system size, and an oscillatory regime at high symmetry, where the average length of the cycles is 2 [10]. We show, both with analytic arguments and numerically, that there is a sharp transition, at a cri...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A
سال: 2022
ISSN: ['1751-8113', '1751-8121']
DOI: https://doi.org/10.1088/1751-8121/ac79e5